

10th CONGRESS OF APIDOLOGY

16.-19.09.2024 Tallinn, ESTONIA

Abstract book

Institute of Agricultural and Environmental Sciences
Chair of Plant Health

Table of Contents

Welcome	3
WelcomeAcknowledgements	5
Programme overview	6
Abstracts	9
Keynote speakers	23
1-2 Bee immunity and diseases	
3 Impacts of climate change and other factors in a changing environment	97
4 Pollinators and pollination ecology in natural and agricultural landscapes	114
5 Novel technologies and methodologies in bee research	146
6 Ecotoxicology, pesticides, pollutants	170
7 Communication and behavior	
8 Evolution and population genetics of bees	235
9 Beekeeping issues	252
10 Bee diversity, conservation and interactions among species	286
11 Bee nutrition	322
12 Information flow from research to public and practice	350
13 Open Topic	372

Welcome

It is our sincere pleasure to welcome you on the EurBee 10 Congress in Tallinn, Estonia! The Congress is organized by the Estonian University of Life Sciences with assistance by Publicon OÜ.

EurBee is the event, where old and new friends get together to exchange the knowledge of novel scientific findings, associated with honeybees and other pollinators.

We encourage young researchers to meet the leading scientists on their field. Establishing networking and creating new connections is extremely important for sustainable bee research.

The City of Tallinn is the capital of Estonia. Tallinn's Hanseatic old town and nowadays modern architecture is a great mixture for every taste. We recommend you to discover the great Estonian flavors and the interesting culture that Tallinn offers you in abundance on every corner.

Looking further, Estonian nature with its forests, bogs and swamps is unique in the world – all the EurBee guests have the opportunity to experience its magic!

Experience magic – experience Estonia!

Sincerely Yours,

Risto Raimets
President of EurBee 10

The host committee

Risto Raimets (PhD), Congress chair Prof. Marika Mänd (PhD) Reet Karise (PhD) Sigmar Naudi (MSc) Margret Jürison (MSc) Kaarel Pent (MSc) Egle Liiskmann (MSc)

The scientific committee

Dalial Freitak, University of Graz, Austria (Chair)
Reet Karise, Estonian University of Life Sciences, Estonia
Tiit Teder, University of Tartu, Estonia
Helena Wirta, Umeå University, Sweden
Jens Pistorius, Julius Kühn-Institut, Germany
Fabio Manfredini, University of Aberdeen, United Kingdom

Congress organiser

Chair of Plant Health

Congress secretariat

PCO Publicon eurbee10@publicon.ee +372 5919 2019 www.publicon.ee/

Acknowledgements

The organisers of EurBee 10 wish to wholeheartedly thank all our generous sponsors, supporters and exhibitors for participating in the congress!

Bronze sponsor

Best student talk and best student poster award sponsor

Exhibitors

The congress is supported by

Eurbee 10 is co-funded by

Kindly supported by

BODY WATER LOSS AS AN ADAPTIVE CAPACITY OF HONEY BEES TO CLIMATE CHANGE

<u>Soledad Sagastume de Andrés</u>¹, Giovanni Cilia², Banan Al Sagour³, Asmaa Anwer Eissa⁴, Fernando Doblado¹, Nizar Haddad⁵, Antonio Nanetti², Mariano Higes¹, Raquel Martín-Hernández¹

¹IRIAF- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha, Centro de Investigación apícola y agroambiental (CIAPA), Marchamalo, Spain
²CREA-Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Bologna, Italy
³Bee Research Directorate, National Agricultural Research Center (NARC), Jordan
⁴ARC- Agricultural Research Center, Bee Research department, Giza, Egypt
⁵Bee Research Directorate, National Agricultural Research Center, Jordan

Abstract

Environmental temperature and relative humidity are important factors affecting honey bee welfare. The two variables are closely related and it has been observed that in bees, low RH levels combined with high temperature can exacerbate heat stress, while high humidity can reduce the severity of heat stress. Therefore, bees are able to regulate both temperature and humidity inside the hive by evaporating water from the nectar and regurgitating droplets of liquid to restore favourable conditions. One way to study this dehydration capacity is to calculate the body water loss (BWL) per bee before and after exposure to specific temperature and humidity conditions. In this work, 9 different conditions combining 35, 40 and 45°C temperature with 10, 25 and 50% RH were analysed. The same experiment has been carried out in Spain, Italy and Jordan with their corresponding subspecies (i.e. *Apis mellifera iberiensis, Apis mellifera ligustica* and *Apis mellifera syriaca*), and the results showed the protective effect of high RH under high temperature conditions. On the other hand, differences in dehydration capacity between subspecies have been found, which point to a different capacity to adapt to hot environments.

These results are under the project 2011-MEDIBEES, which is part of the PRIMA programme supported by the European Union.